
SOLENOID OPERATED DIRECTIONAL VALVES DSG-005-* * * -* -30/3090 Sub-plate Mounting

DIRECTIONAL CONTROLS

Up to 25 MPa (3630 PSI), 10 L/min (2.6 U.S.GPM)

These DSG-005 series solenoid operated directional valves are the products newly developed as a "Mini-series". Compared with DSG-01 series, the valves are much more compactly manufactured but enjoy a maximum operating pressure of 25 MPa (3630 PSI) and a maximum flow rate of 10 L/min (2.6 U.S.GPM), while contributing further to a space saving requirement. Moreover, using wet armature solenoids, the valves ensure the long life.

Specifications

L/min (U.S.GPM)	Max. Operating Pressure MPa (PSI)	Max. Tank-Line Back Pressure MPa (PSI)	Max. Changeover Frequency min ⁻¹ (Cycles/min)	Approx. Mass kg (1bs.)
10	25 (3630)	7 (1020)	120	0.5 (1.1)
	L/m in U.S.GPM)	L/m in U.S.GPM) MPa (PSI) 10 25 (3630)	L/m in U.S.GPM) MPa (PSI) MPa (PSI) 10 25 (3630) 7 (1020)	U.S.GPM) MPa (PSI) MPa (PSI) min ⁻¹ (Cycles/min) 10 25 (3630) 7 (1020) 120

[★] The maximum flow means the limited flow without inducing any abnormality to the operation (changeover) of the valve. The maximum flow differs according to the spool type and operating conditions. For details, please refer to the "List of Standard Models and Maximum Flow" on pages 3 and 4

■ Solenoid Ratings

			Volta	ge (V)	Current & Power at Rated Voltage				
Electric Source	Electric Source Coil Type	(Hz)	Source Rating	Serviceable	Inrush [⋆] (A)	Holding (A)	Power (W)		
	A 100	50	100	80 - 110	0.29	0.15			
AC	A100	60	100	90 - 120	0.26	0.11			
AC	A200	50	200	160 - 220	0.15	0.08	_		
	A200	60	200	180 - 240	0.13	0.06			
DC	D12	_	12	10.8 - 13.2	_	1.2	15		
DС	D24	_	24	21.6 - 26.4	_	0.6	15		

[★] Inrush current in the above table shows rms values at maximum stroke.

■ Model Number Designation

F-	DSG	-005	-3	С	2	-D24	-30	*
Special Seals	Series Number	Valve Size	Number of Valve Position	Spool-Spring Arrangement	Spool Ty pe	Coil Type	Design Number	Design Standard
F: Special seals for phosphate ester	DSG:	005	3	C : Spring Centred	2, 3 40	AC A100, A200	30	Refer to*
ty pe fluids (Om it if not required)	Solenoid Operated Directional Valve	000	2	B: Spring Offset	2, 3	DC D12, D24	30	Refer to

★ Design Standards: None Japanese Standard "JIS" and European Design Standard

90...... N. American Design Standard

Sub-plates / Mtg. Bolts / Hydraulic Fluids /

Sub-plates

D::	Japanese Standa	rd "ЛS"	European Design	n Standard	N. American Desi	Approx.	
P iping Size	Sub-plate Model Numbers	Thread Size	Sub-plate Model Numbers	Thread Size	Sub-plate Model Numbers	Thread Size	Mass kg (lbs.)
1/8	DSGM-005X-10	Rc 1/8	DSGM-005X-1080	1/8 BSP.F	DSGM-005X-1090	1/8 NPT	0.8 (1.8)
1/4	DSGM-005Y-10	Rc 1/4	DSGM-005Y-1080	1/4 BSP.F	DSGM-005Y-1090	1/4 NPT	0.8 (1.8)

Sub-plates are available. Specify the sub-plate model number from the table above. When sub-plates are not used, the mounting surface should have a good machined finish.

■ Mounting Bolts

Four socket head cap screws in the table below are included.

Descriptions	Soc. Hd. Cap Screw (4 Pcs.)	Tightening Torque
Japanese Standard "JIS" European Design Standard	M4 × 35 Lg.	2.5 - 3.5 Nm (22.1 - 31.0 in.1bs.)
N. American Design Standard	No. 8-32 UNC × 1.38 Lg.	

Hydraulic Fluids

Fluid Types

Any type of hydraulic fluid listed in the table below can be used.

Petroleum base oils	Use fluids equivalent to ISO VG 32 or VG46.
Synthetic fluids	Use phosphate ester or poly ol ester fluid. When phosphate ester fluid is used, prefix "F-" to the model number because the special seals (fluororubber) are required to be used.
Water containing fluids	Use water-gly col fluids or W/O emulsion type fluids.

Note: For use with hydraulic fluids other than those listed above, please consult your Yuken representatives in advance.

Recommended Viscosity and Oil Temperatures

Always be sure to use hydraulic fluids within the stipulated conditions shown below: Viscosity: 20-200 mm²/s (100-930 SSU), Temperature: -15 to+60°C (5 to 140°F).

Control of Contamination

Due caution must be paid to maintaining control over contamination of the hydraulic fluids which may otherwise lead to breakdowns and shorten the life of the valve. Please maintain the degree of contamination within NAS 1638-Grade 11. Use $20 \mu m$ or finer line filter.

■ Instructions

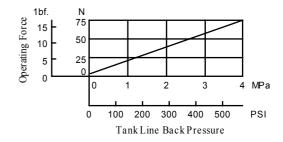
Solenoids

As the solenoids have no surge absorbers, please pay cautious attention to a surge voltage.

Mounting Posture

For any model, there are no restrictions regarding the mounting posture.

Solenoid Energisation


When energising one solenoid, be sure to de-energise another solenoid beforehand.

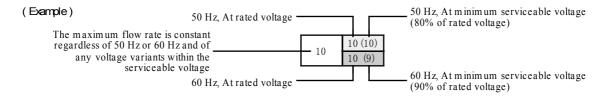
Tank Port

Do not connect the tank port to any pipe line having a surge pressure in it. Be sure to keep the end of the tank line pipe below the oil level. As the solenoids are of wet type structure, it is necessary to make piping in such condition that the inside of the valve is always filled with the fluid.

Operating Force for Manual Override Push Pin

Please note that as the back pressure of the tank line rises, the manual override push pin turns hard to operate. (see the graph below).

DIRECTIONAL CONTROLS

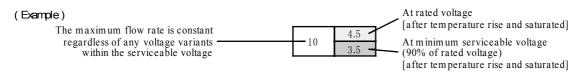

List of Standard Models

■ List of Standard Models and The Maximum Flow

Models with AC Solenoids: DSG-005-***-A*-30/

3090							Max. Flo	w L/min						
Model	Graphic	ř	$A \longrightarrow B \longrightarrow T$			P	- A []	Port "B" E	Blocked]	P— B [Port "A" Blocked]				
Numbers	Sy m bols	Wo	Working Pressure MPa			W	Working Pressure MPa				Working Pressure MPa			
		5	10	16	25	5	10	16	25	5	10	16	25	
DSG-005-3C2		10	10	10	10	10(10)	10(2.5)	4(1)	1.5(0.5)	10(10)	10(2.5)	4(1)	1.5(0.5)	
D3G-003-3C2	P T	10	10	10 10	10(9)	6(2)	1.5(0.5)	0.5(0.5)	10(9)	6(2)	1.5(0.5)	0.5(0.5)		
DSG-005-3C3*	a A B B B B B B B B B B B B B B B B B B	8.5	8.5	8.5	8.5	10	10	10	10	10	10	10	10	
DSG-005-3C40	A B A B	10	10	10	2.5(2)	10	10(2.5)	4.5(1)	0.5	10	10(2.5)	4.5(1)	0.5	
DSG-005-3C40	a czii ișiikico b	10	10	10	2(2)	10	5(1)	1(0.5)	0.5	10	5(1)	1(0.5)	0.5	
DSG-005-2B2		10	10	10	10	2	2	2	2.5	10	10(2)	2.5(1) 1(1)	1(0.5) 0.5(0.5)	
DSG-005-2B3	A B P T	10	10	10	10	4.5	4.5	4.5	4.5	10	10(9)	10(4) 7(3.5)	6.5(1)	

Notes: 1. The relation between the maximum flow in the table above and the frequency/voltage (within the serviceable voltage) is as shown below.



2. For the maximum flow rate in P T of the valves with at mark, please see page 5.

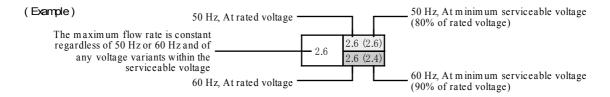
• Models with DC Solenoids: DSG-005-***-D*-30/

3090							Max. Flor	w L/m in	Į.					
Model Graphic	P.	<	- B - A	∶ T	P	– A []	Port "B" E	Blocked]	P— B [Port "A" Blocked]					
Numbers	Sy m bols	W	Working Pressure MPa			W	orking Pre	essure M	IPa	W	Working Pressure MPa			
		5	10	16	25	5	10	16	25	5	10	16	25	
DSG-005-3C2	a A B	10	10	10	10	10	4.5	3	2.5	10	4.5	3	2.5	
DSG-003-3C2	P T	10	10	10 10	10	10 10	3.5	2.5	2	10	3.5	2.5	2	
DSG-005-3C3*	a A B B B B B B B B B B B B B B B B B B	8.5	8.5	8.5	8.5	10	10	10	10	10	10	10	10	
DSG-005-3C40		10	10	7	3.5	10	5	3.5	3	10	5	3.5	3	
DSG-003-3C40	a tzii Ejiki Sib P T	10	10	3.5	3	6.5	3.5	3	2.5	6.5	3.5	3	2.5	
DSG-005-2B2		10	10	10	10	2	2.5	2.5	3	10	5.5	4	3.5	
D3G-003-2B2	PT	10	10	10	10	2	2.3	2.3	3	10	3.5	3	3	
DSG-005-2B3		10	10	10	10	4.5	4.5	4.5	4.5	10	10	10	8	
	P T	10	10	0 10	10 10	4.3	7.3	4.5	4.3	10	10	7	6	

Notes: 1. The relation between the maximum flow in the table above and the voltage (within the serviceable voltage) is as shown below.

2. For the maximum flow rate in P T of the valves with at mark, please see page 5.

DIRECTIONAL CONTROLS

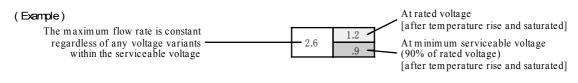

List of Standard Models

■ List of Standard Models and The Maximum Flow

• Models with AC Solenoids: DSG-005-***-A*-30/

3090						M	ax. Flow	U.S.GP1	M					
Model	Graphic	$A \longrightarrow B \longrightarrow T$			Р—	– A []	Port "B" B	Blocked]	P B [Port "A" Blocked]					
Numbers	Sy m bols	Wo	Working Pressure PSI			Wo	Working Pressure PSI				Working Pressure PSI			
		730	1450	2320	3630	730	1450	2320	3630	730	1450	2320	3630	
DSG-005-3C2		2.6	2.6	2.6	2.6	2.6(2.6)	2.6(.7)	1.1(.3)	.4(.1)	2.6(2.6)	2.6(.7)	1.1(.3)	.4(.1)	
D3G-003-3C2	P T	2.0	2.0	2.0	2.0 2.0	2.6(2.4)	1.6(.5)	.4(.1)	.1(.1)	2.6(2.4)	1.6(.5)	.4(.1)	.1(.1)	
DSG-005-3C3**	a A B B B B B B B B B B B B B B B B B B	2.2	2.2	2.2	2.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	
DCC 005 2C40		2.6	2.6	2.6	.7(.5)	2.6	2.6(.7)	1.2(.3)	1	2.6	2.6(.7)	1.2(.3)	1	
DSG-005-3C40	a tzilitiriyi. b	2.6	2.6	2.6	.5(.5)	2.0	1.3(.3)	.3(.1)	.1	2.0	1.3(.3)	.3(.1)	.1	
DSG-005-2B2		2.6	2.6	2.6	2.6	.5	.5	.5	.7	2.6	2.6(.5) 1.2(.5)	.7(.3)	.3(.1)	
DSG-005-2B3	M∐HX b	2.6	2.6	2.6	2.6	1.2	1.2	1.2	1.2	2.6	2.6(2.4) 2.6(2.2)	2.6(1.1) 1.8(.9)	1.7(.3)	

Notes: 1. The relation between the maximum flow in the table above and the frequency/voltage (within the serviceable voltage) is as shown below.



2. For the maximum flow rate in P T of the valves with a mark, please see page 5.

• Models with DC Solenoids: DSG-005-***-D*-30/

3090						M	ax. Flow	U.S.GP1	M					
Model Graphic		P.	<	_ B _ A	∶ T	P— A [Port "B" Blocked]				P B [Port "A" Blocked]				
Numbers	Sy m bols	W	Working Pressi		essure PSI		Working Pressure PSI				Working Pressure PSI			
		730	1450	2320	3630	730	1450	2320	3630	730	1450	2320	3630	
DSG-005-3C2	A B	2.6	2.6	2.6	2.6	2.6	1.2	.8	.7	2.6	1.2	.8	.7	
DSG-005-3C2	P"T	2.0	2.6	2.0	2.0	2.0	.9	.7	.5	2.0	.9	.7	.5	
DSG-005-3C3**	a A B b	2.2	2.2	2.2	2.2	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	
DSG-005-3C40		2.6	2.6	1.8	.9	2.6	1.3	.9	.8	2.6	1.3	.9	.8	
D3G-003-3C40	a tzii (Epixi X 1 0	2.0	2.0	.9	.8	1.7	.9	.8	.7	1.7	.9	.8	.7	
DSG-005-2B2		2.6	2.6	2.6	2.6	.5	.7	.7	.8	2.6	1.5	1.1	.9	
D3G-003-2B2	PT	2.0	2.0	2.0	2.0	.3	. /	. /	.0	2.0	.9	.8	.8	
DSG-005-2B3	M∐HX b	2.6	2.6	2.6	2.6	1.2	1.2	1.2	1.2	2.6	2.6	2.6	2.1	

Notes: 1. The relation between the maximum flow in the table above and the voltage (within the serviceable voltage) is as shown below.

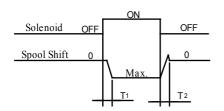
2. For the maximum flow rate in P T of the valves with a mark, please see page 5



DIRECTIONAL CONTROLS

Max. Flow of Centre By-pass / Changeover Time / Pres. Drop

■ Maximum Flow of Centre By-Pass


In valve type 3C3, in case where the actuator is put on in between the cylinder ports A and B as illustrated below and where the actuator moves and suspended at its stroke end and where the valve is then shifted to the neutral position in the suspended of the actuator, the maximum flow rates available are those as shown as the table below regardless of any voltage in the range of serviceable voltage.

m odel Number		Max. Flow L/r	m in(U.S.GPM)	
model Number	5 MPa (730 PSI)	10 MPa (1450 PSI)	16 MPa (2320 PSI)	25 MPa (3630 PSI)
DSG-005-3C3	9.5 (2.5)	6 (1.6)	4.5 (1.2)	3 (.8)

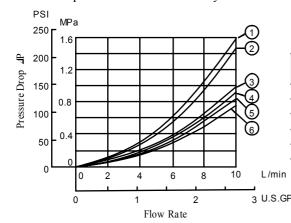
■ Typical Changeover Time (Example)

Changeover time varies according to oil viscosity, spool type and hydraulic circuit.

[Test Conditions]

Pressure: 16 MPa (2320 PSI) Flow Rate: 5 L/min (1.3 U.S.GPM) Viscosity: 30 m m²/s (141 SSU)

 $Voltage: Rated\ Voltage\ (After\ coil\ tem\ per ature\ rises\ and\ saturated)$


Direction of Flow: ABA

[Result of Measurement]

Model Numbers	Time ms				
Model Numbers	T1	T2			
DSG-005-3C2-A*	14	60			
DSG-005-3C2-D*	20	35			
DSG-005-2B2-A*	14	23			
DSG-005-2B2-D*	15	13			

■ Pressure Drop

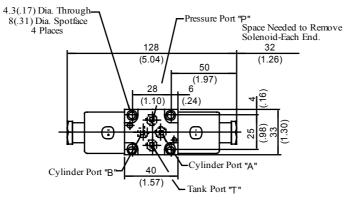
Pressure drop curves based on viscosity of 35 mm²/s (164 SSU) and specific gravity of 0.850.

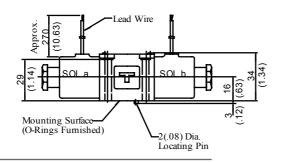
Model Numbers	Pressure Drop Curve Numbers						
Model Numbers	$P \rightarrow A$	$B \rightarrow L$	$b \rightarrow B$	$A \rightarrow T$	$P \rightarrow T$		
DSG-005-3C2	0	•	0	4	_		
DSG-005-3C3	0	Φ	6	θ	Θ		
DSG-005-3C40	0	•	0	(_		
DSG-005-2B2	0	0	0	(_		
DSG-005-2B3	Ø	Ø	0	Φ	_		

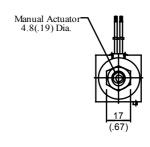
3 U.S.GPM • For any other viscosity, multiply the factors in the table below.

Viscosity	$m m^2/s$	15	20	30	40	50	60	70	80	90	100
Viscosity	SSU	77	98	141	186	232	278	324	371	417	464
Facto	or	0.81	0.87	0.96	1.03	1.09	1.14	1.19	1.23	1.27	1.30

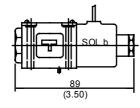
For any other specific gravity (G'), the pressure drop∠(P') may be obtained from the formula below.


 $\Delta P' = \Delta P (G'/0.850)$




DIRECTIONAL CONTROLS

Installation Drawing

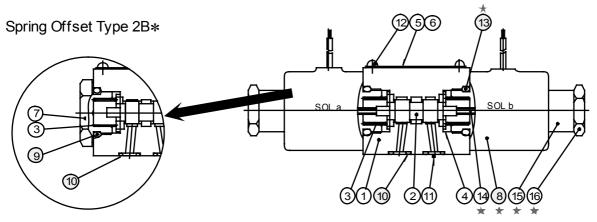

Spring Centred: DSG-005-3C*-*-30/3090

Spring Offset: DSG-005-2B*-*-30/3090

• For other dimensions, refer to "Spring Centred" type.

DIMENSIONS IN MILLIMETRES (INCHES)

Sub-plate Model Numbers	Piping Size "C" Thd.	"D" Thd.
DSGM-005X-10	Rc 1/8	M4
DSGM-005X-1080	1/8 BSP.F	IVI4
DSGM-005X-1090	1/8 NPT	No. 8-32 UNC
DSGM-005Y-10	Rc 1/4	M4
DSGM-005Y-1080	1/4 BSP.F	1 V1 4
DSGM-005Y-1090	1/4 NPT	No. 8-32 UNC


■ Sub-plates : DSGM-005*-10/1080/1090

7(.28) Dia. Through 11(.43) Dia. Spotface 2 Places 14(.55) 7.25 (.29) "D" Thd. 7.5(.30) Deep 4 Places 28 21.5 (1.10) (.85) 20.75 (.82) 21.7(.11) Dia 4(.16) Deep 4 Places 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 32 (1.26) 33 (1.26) 34 (13) Dia. 4 Places	58.5 (2.30) 35.5 (1.40) 15 (.59) 12.5 (49) 12.5 (49) 12.5 (1.40) 15 (49) 15 (49) 16 (1.40) 17 (1.40) 17 (1.40) 18 (1
--	---

DIRECTIONAL CONTROLS

Spare Parts List

Solenoid assembly is composed of the parts marked with ★.

List of Seals

Item Name of Parts		Part Numbers	Qty.		D a m a r l r	
		Part Numbers	3C*	2B*	Remarks	
9	O-Ring	SO-NB-P18	_	1		
10	O-Ring	SO-NB-P5	4	4		
13	O-Ring	SO-NB-P14	2	1	Included in Solenoid Ass'y	

Note: When ordering seals, please specify the seal kit number "KS-DSG-005-30".

Solenoid Ass'y and Coil Ass'y No.

Valve Model Numbers	Solenoid Ass'y No.	⊗ Coil No.		
DSG-005-***-A100-30/3090	SA05-100-30	C-SA05-100-30		
DSG-005-***-A200-30/3090	SA05-200-30	C-SA05-200-30		
DSG-005-***-D12-30/3090	SD05-12-30	C-SD05-12-30		
DSG-005-***-D24-30/3090	SD05-24-30	C-SD05-24-30		

/!\ C.

CAUTION

When making replacement of seals or solenoid assemblies, please do it carefully after reading through

the relevant instructions in the Operator's Manual.

MARNING

Before maintenance or removal, do the following. Failure to do these may cause components to move, causing

- ois leak against sequipus acris power supply, and be sure that all electric motors and engines have
- Rtempfdpressure in all hydraulic systems to zero.